In today’s article, I’d like to discuss the most essential issue in the field of medicine’s future: artificial intelligence. 

promise that within the following 10 minutes, you will have comprehensive understanding of what artificial intelligence is, how it works, what it will become, and what it all means for health. 
So brace up, because when stated artificial intelligence, asked individuals what phrase sprang to mind immediately. 
“death, fear, or the Terminator.” they’ll generally say. 

For long time, we thought of artificial intelligence as futuristic concept that would lead to something horrific, such as battle against killer robots. 
Our movement has essentially bombed and melted at the box office for the past few years. 
We are gradually learning that AI is whole different animal. 
We are less terrified of robots stealing our lives and more worried of them taking our employment, if you infiltrate every layer of our life now almost silently. 


Even though we haven’t yet achieved true AI, it has already crept into our lives without our knowledge. 
I’m sure you spent more than an hour today using AI. 
If you used Google today, the results were tailored to your specific requirements and habits based on prior searches and website visits. 
If you used Facebook or Instagram, the advertising you saw were dependent on what you said while holding your phone up to your face. 


I
you utilized Google Maps, your route was picked not simply to get you to your destination faster, but also to reduce traffic congestion in your neighborhood. 
During this time, no one is sitting in front of computer. 
These things are accomplished by algorithms that continually learn from and about us in order to improve over time. 


Furthermore, large variety of technologies, when coupled with VDI, are instances of AI in operation today, including Spotify, Netflix, and Amazon, two Apple products, and large number of others. 
These technologies were adopted without fanfare, and expect that to continue in most circumstances in the future. 
As you can see, these algorithms are nothing like killer robots or the future Elon Musk fears, but they are still form of artificial intelligence in action. 


This is why, when it comes to artificial intelligence, like to adopt the broadest term possible. 
To put it another way, every computer that exhibits intelligence is artificial intelligence, and the real distinction between today’s AI and the Terminator lies in the degrees of AI rather than the definition. 
And Nick Bostrom, author of the great book Super Intelligence, has divided artificial intelligence into three categories. 
To begin with, all we have now is subset of AI known as artificial limited intelligence. 
It describes computer’s or algorithm’s capacity to excel in specific test. 


It can play go or just like no one else on the planet, but its IQ in medicine is 0. 
And when it comes to finding trends in large data sets like radiological pictures or patient data, may be quite valuable. 
Second, you’re attempting to create GI (artificial general intelligence). 
It refers to machine’s ability to comprehend and learn any cognitive work that single person can perform. 
It’s essentially machine that can match human’s cognitive abilities.


Hal 9000 from 2001 is good example of AGI: 
However, it is capable of navigating starship, playing chess, and conversing with the crew. 
Third, we should be most concerned about machine known as “AI” or “artificial superintelligence,” which, as its name indicates, refers to computer that comprehends and learns the knowledge of the whole human race while potentially surpassing its cognitive power. 
To be honest, our objective should be to stop just before we achieve AGI, so that we may enjoy the benefits of what AI can bring to our lives without reaching point where we don’t comprehend what’s going on in movies. 


You can find plenty of instances for any of these levels, but life, especially in medicine, isn’t all doom and gloom. 

smart algorithm can be trained on millions of photos in hours and go through more data in the morning than physician can in their whole career if you can develop robots that execute certain jobs accurately, if you can actually accomplish miracles while radiologists look at over 50 images day. 
Let’s take closer look at how these things function in practice. 


Machine learning and deep learning are the two most well- 

known approache

for advancing AI systems, and almost everyone has heard of them. 
Machine learning is technique in which computer program learns from data to recognize patterns and make judgments with little or no human interaction. 
It’s very particular and restricted method of learning how to accomplish given activity. 
If you want an algorithm to learn to recognize cats in photos, you’ll need to collect millions of photos featuring cats and let the algorithm figure out its own criteria for spotting cats. 
But there is one human aspect in machine learning that has to be discussed, in my opinion. 


Leaving medical data archives to machines makes logical in principle, but it’s far more difficult in fact since medical data archives were clearly not constructed with mathematical algorithms in mind. 
Trying to standardize existing sampling techniques or get enough algorithm- 

adjusted samples is 

mammoth effort. 
That is why data annotators are the unsung AI revolution heroes. 
They draw lines around tumors, identify cells, and indicate ECG strips on CT or MRI studies. 
It’s tedious and time- 

consuming operation, 

but it must be completed in order for robots to use the data. 


Simply simply, data analyzers are machine learning’s eyes. 
However, some really difficult exams are difficult to describe. 
Consider finding the tumor with CT scan. 
Before rendering diagnosis, radiologists must analyze the pictures, assess the patient’s medical history, and weigh slew of other factors. 
Deep learning must be used for such jobs. 
It’s much more advanced technique. 
deep learning system can examine raw MR pictures, or it may not even require images to analyze them; instead, it may simply need the raw data flowing directly out of the machine. 


While machine learning algorithms require human assistance to learn to see, deep learning algorithms only require annotated data until they learn to see, after which they can handle unlabeled and unstructured data without assistance. 
This research uses neural networks to simulate how human brain processes information and makes decisions. 
What does this portend for medicine’s future? 
AI will begin to revolutionize every aspect of our life, including medical, in few of years. 
It will, without doubt, dramatically reshape healthcare, in my opinion. 
Let me give you five instances in fast succession. 
I’ll start by looking at medical records. 
Data management is the most obvious use of AI in health care. 


The first step in modernizing existing healthcare systems is to collect, identify, and trace massive data sets of already available medical information. 
Two, if you can evaluate those data sets and integrate them with qualities from patient’s file to discover prospective treatment plans, I’ll build treatment plans for you. 
Why do number three when you have tens of millions of research and publications to concentrate on? 
I’m going to invent precise medicine. 


Traditional medical practice focuses on large groups of people and attempts to develop clinical solutions, drugs, or treatment plans based on the statistically average person’s needs, but with the ability to analyze massive amounts of medical data to achieve genome sequencing health sensors and variables. 
As result, AI will most certainly assist healthcare in moving away from one- 
size- 
fits- 

all medical solutions an

toward personalized treatments and pharmaceuticals. 


Clinical trials for medications and pharmaceuticals t

ook more than decade and cost billions of dollars before AI with revolutionized drug production. 
could make this procedure lot faster while also making it lot more cost- 

effective. 

This will have huge impact on health care and how new ideas make their way into ordinary treatment. 
Imagine how quickly we could find treatment for the next epidemic if we had access to supercomputers and AI algorithms to assist us. 
Health help and medication management are ranked fifth. 


The National Institutes of Health’s AI cure app utilizes smartphone’s webcam and AI to automatically validate that their patients are taking their meds, or, to put it another way, to help them in learning how to control their disease. 
This will be highly valuable for those with significant medical illnesses, patients who tend to ignore their doctor’s advise, and clinical trial participants. 
Of course, while this may sound too good to be true, whenever you hear about AI being hyped up or people trying to scare you to death, it appears very valid that if the mighty AI can be even half of what it promises to be, our lives and jobs will change dramatically, but let me assure you that it will be the most significant help and support position can ask for today. 


We have attained level of medical knowledge, yet no doctor can possibly know everything there is to know about the 31 million medical articles available. 
However, AI will help them. 
It will be beneficial to them. 
It will provide details about potential therapy options, clinical studies, and so forth. 
However, in the hands of doctors, these will be cutting- 

edge inst

ruments for treating and curing patients. 
Those concerned that the art of medicine would be lost as result of autonomous tools, robots, and algorithms should rest assured that this will not be the case when an AI program discovers treatment but cannot explain how it did so. 


We’re waiting for medical experts to explain what happened. 
Ai will deliver the true hero of medicine, but if you need to be prepared, Eeyah will arrive faster than we can anticipate. 
Regulations, supervision, and education are required. 
As for me, I’m trying to do my part, so stay tuned for slew of new posts on this fascinating subject. 
If you want to help, spread the word about this site. 

Please subscribe here if you want to learn more about AI.



Leave a Reply

Your email address will not be published.