Thursday, 2 September 2021

Explaining Quantum Computers – Human Technology's Limits | Quantum Computing.


What Is Quantum Computing? | Quick Learner.

Even though we benefit from traditional computers on daily basis, there are some problems of particular size and complexity that would take an inordinate amount of time for typical computer to solve. 
This is where quantum computing comes in. 
All computers rely on the ability to store and manipulate data as fundamental capability. 
Individual bits, which store information as binary and states, are manipulated by modern computers. 
When we see the letter "A," for example, our computers see precise string of zeros and ones.

Everything is done using these sequences of zeros and ones, from social media to spreadsheets (some examples of classical computers: Word, Excel, social media, blog, games, etc. ). (matrix style string of bits). 
Quantum computers use qubits instead of bits, as do existing computers. 
In today's computers, bits can only be one or zero; they can't be both. 
Qubits, on the other hand, can represent both one and zero at the same time. 
If computers were coins, current models would be coin flip with only two outcomes: heads or tails.

However, quantum computing would be similar to tossing coin; the computer would not have to select between the two options. 
This enables quantum computers to examine large number of variables at the same time. 
The good news is that quantum computers would be thousands of times quicker than present computers, potentially cutting the time it takes to solve challenging problem from hundreds of thousands to seconds. 
What's the bad news? 
Quantum computers are extremely delicate and require complete isolation from heat and vibration.

One quantum computer is kept at 0.015 Kelvin, or 180 times the temperature of interstellar space. 
Despite the promise of quantum computers to fuel exciting improvements such as stronger batteries or new disease 
curing medications, conventional computers will continue to be the simplest and most cost-effective solution for most issues.  

Explaining Quantum Computers – Human Technology's Limits:

Explaining
 
Quantum Computers 
Human Technology's Limits 
Human technology comprised of our wits, fire, and sharp sticks for the most of our history. 
While fire and sharp sticks evolved into power plants and nuclear weapons, our brains received the most significant boost. 
Since the 1960s, the processing power of our brain machines has increased tremendously, allowing computers to get smaller while also becoming more powerful. 
However, this process is approaching its physical limits. 
Computer components are shrinking to the size of atoms.

We need to clear up certain fundamentals before we can see why this is an issue. 
computer is made up of extremely basic components that perform very basic tasks. 
Data representation, processing methods, and control mechanisms. 
Computer chips are made up of modules that contain logic gates and transistors. 
transistor is the most basic type of data processor found in computers; it's essentially switch that can either block or allow information to pass through.

This data is made up of bits that can be adjusted to value of or 1. 
To represent more complicated information, multiple bits are combined. 
Logic gates are made up of transistors that perform extremely basic tasks. 
An AND Gate, for example, sends output if all of its inputs are 1, and output otherwise. 
Finally, logic gates are combined to construct useful modules, such as adding two numbers. 
Once you know how to add, you can multiply, and once you know how to multiply, you can pretty much do everything. 
You may consider computer as group of 
year 
old's answering really elementary arithmetic questions because all basic operations are literally simpler than first-grade math. 
 
They could compute anything from astrophysics to Zelda if there were enough of them. 
Quantum physics, on the other hand, is complicating matters as parts get smaller and smaller. 
transistor is just an electric switch. 
Electrons are charged particles that move from one location to another. 
As result, switch is channel that can prevent electrons from traveling in one way. 
typical transistor scale nowadays is 14 nanometers, which is about times smaller than the diameter of the HIV virus and 500 times smaller than red blood cell. 
As transistors drop to the size of few atoms, electrons may be able to simply tunnel to the opposite side of blocked path via technique known as quantum tunneling.

In the quantum realm, physics operates in very different way than we're used to, and regular computers just stop working. 
For our technical advancement, we are reaching true physical barrier. 
To tackle this difficulty, scientists are developing quantum computers that take advantage of these peculiar quantum features. 
Bits are the smallest unit of information in conventional computers. 
Qubits, which may be set to one of two values, are used in quantum computers.

qubit can be single photon or two
 - 
level quantum system like spin and magnetic field. 
The possible states of this system, like the photon's horizontal or vertical polarization, are and 1. 
The qubit in the quantum world doesn't have to be just one of those; it can be in various proportions of both states at the same time. 
This is referred to as superposition. 
When you test its value, for example, by passing the photon through filter, it must choose whether to be vertically or horizontally polarized. 
So long as the qubit remains unseen, it's in superposition of probabilities for and 1, and you can't tell which one it will be. 
However, it collapses into one of the definite states the moment you measure it.

The concept of superposition is revolutionary. 
At any given time, four classical bits can be in one of two to the fourth power of four possible configurations. 
There are total of 16 possible combinations, but you can only utilize one of them. 
Four qubits in superposition, on the other hand, can be in all 16 configurations at the same time. 
With each additional qubit, this number climbs exponentially. 
Twenty of them are already capable of simultaneously storing million values. 
Entanglement, close link that causes each of the qubits to react instantly to change in the state of the other, no matter how far apart they are, is really strange and unintuitive quality qubits can have. 
This means that if you measure just one entangled qubit, you can determine the properties of its partners without having to look at them.

Qubit Manipulation is also brain teaser. 
simple set of inputs is fed into logic gate, which creates single definitive output. 
quantum gate manipulates superpositions as input, rotates probability, and outputs another superposition. 
So quantum computer entangles qubits and manipulates probabilities via quantum gates, then measures the result, collapsing superpositions to an actual sequence of 0s and 1s. 
This means that you can perform all of the calculations that are possible with your configuration at the same time. 
Finally, you can only measure one of the outcomes, and it'll almost certainly be the one you want, so double-check and try again. 

However, by skillfully utilizing superposition and entanglement, this can be considerably more efficient than on traditional computer. 
While quantum computers are unlikely to replace our home computers, they are far superior in some areas. 
Database searching is one of them. 
regular computer might have to evaluate every single entry in database to locate something. 
Quantum computer algorithms only require the square root of that time, which is significant difference for large datasets. The most well 
-
 known application of quantum computers is destroying IT security. 
Currently, an encryption system protects your browser, email, and banking data, in which you give everyone public key to encrypt messages that only you can decipher. 


The 
difficulty is that your secret private key can be calculated using this public key. 
Fortunately, calculating the required calculations on regular computer would take years of trial and error. 
quantum computer with exponential speed 
 up, on the other hand, might do it in flash. 
Simulations are another intriguing new use. 
Quantum simulations are resource 
intensive, and even for larger objects like molecules, they frequently lack accuracy. 

So, instead of simulating quantum physics with actual quantum physics, why not simulate quantum physics with genuine quantum physics? 
Quantum simulations could provide new information about proteins, potentially revolutionizing medicine. 
We don't know now if quantum computers will be merely specialized tool or major revolution for humanity. 
We don't know where technology's boundaries are, and there's only one way to find out.

No comments:

Post a Comment

If You Have Any Doubts, please Let Me Know

Everything You've Ever Wanted to Know About Electricity: A guide around electronics and how to go about it. | Tech-blogging.com

This  is  a  tale  about  a  world  preoccupied  with  material  possessions.  It's  a  tale  about  a  broken  system.  We're  dest...