Friday, 27 August 2021

What is an Electric Car and How Does It Work? | Tesla Model S | Tesla Motors High-Efficiency Secret.


What is an Electric Car and How Does It Work?

Electric cars are causing stir in the automotive world. By 2025, these noise- free, pollution 
free, and high- 
performance vehicles are predicted to supplant their internal combustion engine counterparts. 
This blog will reveal the hidden technologies behind the Tesla Model S, which recently became the world's fastest accelerating car. We'll look at how electric cars have achieved superior performance by looking at the induction motor, inverter Lithium- Ion battery power source, and, most importantly, the synchronized vehicle mechanism.
Using logical, step 
step approach 
The induction motor, invented by the famous physicist Nikola Tesla roughly 100 years ago, is the heart of the Tesla car. 
The process of induction 
The stator and the rotor are the two major components of motor. 
The motor's construction details can be found here. 
The rotor is nothing more than cluster of short/circuited conducting bars connected by end rings. 
The stator receives three/phase AC power supply. 
rotating magnetic field is created by the three/phase alternating current in the coils. 
four/pole magnetic field is produced by the Tesla motor.

This revolving magnetic field causes electricity to flow through the rotor bars, causing it to turn. 
The rotor in an induction motor is always behind the RMF. 
Brushes and permanent magnet are not present in an induction motor. 
It is both robust and powerful at the same time. 
An induction motor's beauty is that its speed is determined by the frequency of the AC power source. 
We can change the drive wheel speed simply by changing the frequency of the power source. 
Because of this simple fact, electric car speed control is simple and reliable. 
The motor is powered by variable frequency drive, which adjusts the speed of the motor.

The motor speed can be set anywhere between zero and 18,000 revolutions per minute. 
This is the most significant benefit electric cars have over internal combustion vehicles. 
Only small range of speeds allows an internal combustion engine to create useable torque and power. 
As result, directly linking the rotation of the engine to the rotation of the drive wheel is not good idea. 
To alter the driving wheel speed, transmission must be installed. 
An induction motor, on the other hand, will operate efficiently at any speed. 
An electric car does not require speed 
 varying transmission, and an IC engine does not create direct rotational motion.
The piston's linear motion must be transformed to rotational motion. 
Mechanical balancing is severely hampered as result of this. 
The internal combustion engine is not only not self 
starting like an induction motor, but its power output is always inconsistent. 
To tackle these problems, variety of accessories are required.

With an induction motor, on the other hand, you would have direct rotational motion and uniform power output, and many components in the IC engine can be omitted. 
As result of these features, an induction motor has high response rate and greater power 
weight ratio, resulting in superior vehicle performance. 
But whence does the motor get its energy? 
Because DC power is produced by battery pack, it must be converted to AC before reaching motor. 
This is accomplished by the use of an inverter.

AC power frequency is likewise controlled by this power electronic equipment, which controls the motor speed. 
Furthermore, the inverter may adjust the motor power output by varying the amplitude of the ac power. 
As result, the inverter serves as the brain of the electric vehicle. 
Let us now shift our attention to the battery pack. 
You'll be surprised to learn that they're simply collection of common lithium 
ion cells identical to ones you use every day. The cells are combined in series and parallel configuration to generate the electricity needed to power your electric vehicle. 
Through the gap between the cells, glycol coolant is supplied through metallic inner tubes.

Tesla's use of numerous small cells rather than few large cells is one of his most notable innovations. 
There is guarantee of effective cooling. 
This reduces thermal hot spots and ensures an equal temperature distribution, resulting in longer battery pack life. 
Detachable modules are used to organize the cells. 
The battery pack contains 16 of these modules, totaling roughly 7,000 cells. 
The heated Glycol is cooled by running through radiator at the front of the vehicle. You can also see how low 
height battery pack, when installed close to the ground, lowers the vehicle's center of gravity.

The car's stability is greatly improved by the reduced center of gravity. 
The big battery pack is also distributed across the floor, providing structural stability in the event of side crash. 
Let's return to Tesla's drivetrain now. 
The motor's output power is routed through gearbox to the driving wheels. 
Because the motor is efficient in wide variety of operating conditions, the Tesla Model uses simple single speed transmission, as previously mentioned. 
The motor's output speed is reduced in two phases, as you can see. 
In an electric car, even reverse gear is simple to do.

To do this, simply reverse the power phase order. 
The sole aim of an electric automobile transmission is to reduce speed and increase torque. 
differential is the Gearbox's second component. 
It receives the reduced 
speed drive. 
This is simple open differential, as you can see. 
Open differentials, on the other hand, have traction control issue. 
But why is an open differential used instead of restricted slip differential in such sophisticated vehicle?

The open differential is more durable and capable of carrying more torque. 
Two approaches can efficiently address problem that develops in an open differential: selective braking and interrupting the power supply. 
This power supply cut by cutting the fuel is not as responsive in an internal combustion engine. 
The power supply cut in an induction motor, on the other hand, is very responsive and good way to get traction control. 
All of this is possible in the Tesla thanks to cutting/edge algorithm and the assistance of sensors and controls. 
Tesla Motors has, in nutshell, replaced sophisticated mechanical hardware system with smart, responsive software.
Did you know that an electric automobile can be driven effectively with only one pedal? 
This is owing to its powerful regenerative braking system, which saves the car's enormous kinetic energy as electricity rather of losing it as heat. 
Regenerative braking kicks in as soon as you let go of the accelerator pedal in an electric automobile. What's more, the same induction motor functions as generator during regenerative braking. 
The induction motor's rotor is driven by the wheels here. 
We know that the rotor speed in an induction motor is lower than the RMF speed. 
The motor will be converted into generator.

All you have to do is make sure the rotor speed is higher than the RMF speed. 
In this case, the inverter is critical in regulating the input power frequency and keeping the RMF speed below that of the rotor. 
This will generate far more electricity in the stator coils than the provided electricity. 
After the conversion, the generated electricity can be stored in the battery pack. 
During this operation, an opposing electromagnetic force occurs on the rotor, slowing the driving wheels and the automobile. 
Using single pedal, the vehicle speed may be precisely regulated during the journey. 
The brake pedal can be used to bring the vehicle to complete halt. 
Electric cars, as you may already know, are far safer than internal combustion engines.

The cost of maintaining and driving an electric car is significantly lower than that of car with an internal combustion engine. 
Electric cars promise to be the cars of the future, with the shortcomings of the electric car being overcome by greater technology. 
Your contributions to Tech- are greatly appreciated. 
It enables us to create more instructive blogs for you at no cost. 
Thank you very much.

High-Efficiency Secret

What makes Tesla's new electric motor so special? 
Hello, my name is Kunal, and I'm writing from Mumbai. 
Today, I'll demonstrate the two types of electric motors used by Tesla. 
We'll discuss their benefits and drawbacks, and I'll show you what makes the new Tesla electric motor so special. 
So, let's get this party started: 
What are the two types of electric motors that Tesla currently use, and why? 
Tesla's electric cars use both an induction motor (also known as an asynchronous motor) and synchronous motor. 
permanent magnet synchronous motor abbreviated PMSM and synchronous reluctance motor are combined in the new synchronous motor.

To further understand why Tesla is deploying new extra electric motor, we'll first take look at the standard PMSM and induction motor. 
Permanent magnets in the rotor of PMSM follow the stator's revolving magnetic field. 
Because induction motors employ copper bars instead of permanent magnets in the rotor, an additional current in the stator is necessary to generate magnetic field in or from the rotor. 
Induction motors have poorer efficiency in the lower speed range than synchronous motors with permanent magnets as result of this.

Induction motors, on the other hand, are marginally more efficient at high speeds than normal PMSM. 
This is because the PMSM requires more current to weaken the magnets in the higher speed range. 
However, at high speeds, efficiency is critical since the power or energy consumption is quite large. 
Because induction motors do not contain permanent magnets, they are safer, have higher temperature tolerance, and are less expensive to construct. 
If you want to learn more about how an induction motor works, check out the description for full blog.

Despite this, why does Tesla currently employ an electric motor with pricey permanent magnets? 
Tesla uses synchronous reluctance motor in conjunction with regular PMSM. 
This has the advantage of lowering the current required to weaken the magnets or generating additional reluctance torque. 
As result, at high speeds, the novel motor can reach even higher efficiency than an induction motor. 
The magnets are designed in a V...shape, and the influence of reluctance torque may be adjusted by adjusting the angle and location of the magnets.

Another advantage of electric motors over induction motors is that they do not require liquid cooling of the shaft because current electric motors have lower rotor losses. 
As result, the driving system is more reliable and cost...effective. 
The new Tesla electric motor has six magnetic poles instead of four. 
This enhances the motor's torque, but it also increases losses in the sheet metal, windings, and permanent magnet, particularly at high speeds.
This is also why permanent magnets are separated into pieces in order to prevent losses. 
But what is it about Tesla's new electric motor that makes it so special now? 
It isn't the idea of the electric motor type, because other manufacturers, such as Toyota, have long used this sort of electric motor. 
The minor details, such as the cooling, the position sensor, and the permanent magnets, are the answers. 
Tesla's development engineers did an excellent job with these aspects, so kudos to them. 
If you have any more questions concerning the details, please leave them in the comments section.

I'll answer your inquiries and offer assistance. 
Please share, like, and subscribe to 
my page if you appreciated the blog. 
Thank you for taking the time to read this, and wish you all the best in your work.


  1. You've provided quite good information here about Tampa Airport Limos. This is fantastic since it expands our knowledge and is also beneficial to us. Thank you for sharing this piece of writing.

    1. Thanks for your kind words, Tampa Luxury Service. We're so happy to hear you love the Article.


If You Have Any Doubts, please Let Me Know

What is Biometric Authentication ?| What is Biometric ?| How Biometric Works ?|What is Biometric System ?.

Hello and welcome to our ongoing series about enterprise technology. Today we’re looking at biometric authentication, the ...